Frequency of Colistin Resistance Among the Common Gram- Negative Bacterial Pathogens; Escherichia Coli, Klebsiella Pneumoniae, Acinetobacter Baumannii and Pseudomonas Aeruginosa
DOI:
https://doi.org/10.51253/pafmj.v75iSUPPL-7.9059Keywords:
Antimicrobial resistance, Colistin, Gram negative bacteriaAbstract
Objective: To determine the distribution and burden of Colistin resistant gram-negative bacterial isolates from clinical specimen.
Study Design: Cross-sectional study.
Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan, from Jan 2019 to Jul 2020.
Methodology: All clinical samples (n=4199) received for bacterial culture during the study period were included in the study. Gram negative isolates including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Escherichia coli were tested for Colistin susceptibility using phenotypic methods, that included VITEK® 2 Systems Version: 08.01 (bioMerieux, France) and inhouse validated Colistin agar. The breakpoint of > 2 µg/ml was taken as resistant and ≤ 2 µg/ml as susceptible for all isolates.
Results: Overall, 309(7.4%), out of the total 4199 isolates were found to be resistant to Colistin. The resistance was highest in Klebsiella pneumoniae isolates, with 208(17.4 %) out of the total 1194 being found resistant in the study. The resistance among the isolates of Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli was 47(5.5%), 33(2.8%) and 21(2.1%), respectively.
Conclusion: Resistance to Colistin is on the rise and emerging Colistin resistance is a challenge that needs urgent intervention in order to save this last line treatment option.
Downloads
References
1. Elbediwi M, Li Y, Paudyal N, Pan H, Li X, Xie S, et al. Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019; 7(10): 461. https://doi.org/10.3390/microorganisms7100461
2. Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect Dis 2019; 6(10): ofz368. https://doi.org/10.1093/ofid/ofz368
3. Luo Q, Wang Y, Xiao Y. Prevalence and transmission of mobilized Colistin resistance (mcr) gene in bacteria common to animals and humans. Biosaf Health 2020; 2(2): 71-78.
https://doi.org/10.1016/j.bsheal.2020.05.001
4. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated Colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16: 161-8.
https://doi.org/10.1016/S1473-3099%2815%2900424-7
5. Georgios M, Lemonia S. Polymyxin resistance mechanisms: from intrinsic resistance to mcr genes. Recent Pat Anti Infect Drug Discov 2018; 13: 1-9.
https://doi.org/10.2174/1574891x14666181126142704
6. Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized Colistin resistance gene mcr-9 in a multidrug-resistant, Colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio 2019; 10(3): e00853-19.
https://doi.org/10.1128/mBio.00853-19
7. Leber AL, editor. Clinical microbiology procedures handbook. 4th ed. ASM Press; 2016.
8. European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2019.
9. Turlej-Rogacka A, Britto Xavier B, Janssens L, Lammens C, Zarkotou O, Pournaras S, et al. Evaluation of Colistin stability in agar and comparison of four methods for MIC testing of Colistin. Eur J Clin Microbiol Infect Dis 2018; 37: 345-353.
https://doi.org/10.1007/s10096-017-3140-3
10. Huang H, Dong N, Shu L, Lu J, Sun Q, Chan EW, et al. Colistin-resistance gene mcr in clinical carbapenem-resistant Enterobacteriaceae strains China, 2014-2019. Emerg Microbes Infect 2020; 9(1): 237-245.
https://doi.org/10.1080/22221751.2020.1743329
11. Santimaleeworagun W, Thunyaharn S, Juntanawiwat P, Thongnoy N, Harindhanavudhi S, Nakeesathit S, et al. The prevalence of Colistin-resistant Gram-negative bacteria isolated from hospitalized patients with bacteremia. J Appl Pharm Sci 2020; 10(2): 56-59.
https://doi.org/10.7324/japs.2020.102009
12. Qamar S, Shaheen N, Shakoor S, Farooqi J, Jabeen K, Hasan R. Frequency of Colistin and fosfomycin resistance in carbapenem-resistant Enterobacteriaceae from a tertiary care hospital in Karachi. Infect Drug Resist. 2017; 10: 231-236.
https://doi.org/10.2147/IDR.S130567
13. Alfouzan W, Dhar R, Nicolau DP. In vitro activity of newer and conventional antimicrobial agents, including fosfomycin and Colistin, against selected Gram-negative bacilli in Kuwait. Pathogens 2018; 7: 75.
https://doi.org/10.3390/pathogens7030075
14. Malchione MD, Torres LM, Hartley DM, Koch M. Carbapenem and Colistin resistance in Enterobacteriaceae in Southeast Asia: review and mapping of emerging and overlapping challenges. Int J Antimicrob Agents 2019; 54: 381-399.
https://doi.org/10.1016/j.ijantimicag.2019.05.005
15. Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU et al. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop 2019; 52: e20190237. https://doi.org/10.1590/0037-8682-0379-2019
16. Pormohammad A, Mehdinejadiani K, Gholizadeh P, Mohtavinejad N, Dadashi M, Karimaei S, et al. Global prevalence of Colistin resistance in clinical isolates of Acinetobacter baumannii: a systematic review and meta-analysis. Microb Pathog 2019.
https://doi.org/10.1016/j.micpath.2019.103887
17. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B, et al. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 2017; 30(1): 409-447.
https://doi.org/10.1128/CMR.00058-16
18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 30th ed. Wayne: CLSI; 2020.
19. Van Loon K, Voor AF, Vos MC. A systematic review and meta-analyses of clinical epidemiology of carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62(1): e01730-17. https://doi.org/10.1128/AAC.01730-17
20. Guducouglu H, Gursoy NC, Yakupogullari Y, Parlak M, Karasin G, Sunnetcioglu M, et al. Hospital outbreak of a Colistin resistant, NDM-1 and OXA-48 producing Klebsiella pneumoniae; high mortality from pandrug resistance. Microb Drug Resist 2018; 24(7): 966-972.
https://doi.org/10.1089/mdr.2017.0234
21. Al Mayahi Z, Kemel S, Amer H, Beatty M. Outbreak of Colistin resistant organisms at a tertiary care hospital in Riyadh, Saudi Arabia, 2016. Pan Afr Med J 2019; 34: 162.
https://doi.org/10.11604/pamj.2019.34.162
22. Kizny GAE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. Hospital environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections: a systematic review of literature. Clin Infect Dis. 2017; 64(10): 1435-1444. https://doi.org/10.1093/cid/cix134
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anam Imtiaz, Irfan Ali Mirza, Mariam Sarwar, Wajid Hussain, Umar Khursheed, Umer Khan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





