Correlation between Mechanism of Carbapenem Resistance and in vitro Efficacy of Ceftazidime-Avibactam and Meropenem-Vaborbactam on Carbapenem-Resistant Enterobacterales and Pseudomonas Aeruginosa
DOI:
https://doi.org/10.51253/pafmj.v73i6.7377Keywords:
Carbapenem -resistant enterobacterial, Carbapenem -resistant pseudomonas aeruginosa, Ceftazidime-avibactam, meropenem-vaborbactam, EDTA-modified Carbapenem inactivation method, Modified carbapenem inactivation methodAbstract
Objective: To determine the mechanism of Carbapenem resistance, type of Carbapenemase produced and in vitro efficacy of Ceftazidime-Avibactam (CAZ-AVI) and Meropenem-Vaborbactam (MEV) against Carbapenem-resistant Enterobacterales and in vitro efficacy of Ceftazidime-Avibactam against Carbapenem-resistant Pseudomonas aeruginosa.
Study Design: Cross-sectional study.
Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology, Rawalpindi Pakistan, from Mar to Aug 2020.
Methodology: The mechanism of Carbapenem resistance in Enterobacterales and P.aeruginosa was determined by mCIM and eCIM methods. In vitro, the susceptibility of isolates to Ceftazidime-Avibactam and Meropenem-Vaborbactam was
determined by disk diffusion technique according to CLSI 2020 guidelines.
Results: Out of 249 Carbapenem -resistant isolates, there were 192(77.1%) Enterobacterales and 57(22.9%) P.aeruginosa. From 192 Enterobacterales, 174(90.6%) were Carbapenemase producers while 18(9.4%) used ‘other mechanisms. From 174
Carbapenemase producers, metallo-β-lactamases were produced by 141(73.4%) while serine Carbapenemases by 33(17.2%). Out of 33 serine Carbapenemase producers,19(57.6%) were sensitive to CAZ-AVI and 6(18.2%) to MEV. Out of 141 MBL producers, 31(22%) were sensitive to CAZ-AVI and 18(12.8%) to MEV. Out of 57 P.aeruginosa, 30(52.6%) were Carbapenemase producers and 1(3.4%) were sensitive to CAZ-AVI while 27(47.4%) were non-Carbapenemase producers and 13(48%) were sensitive to CAZ-AVI. MBL production predominated.
Conclusion: The in vitro efficacy of these antibiotics against MBL producers and serine Carbapenemase producers was not
satisfactory.
Downloads
References
Sabir N, Hussain W, Ahmed A, Zaman G, Mirza IA, Ikram A, et
al. Burden of multi-drug resistant, extensively-drug resistant and
pan-drug resistant superbugs isolated from various indoor
microbiological specimens at tertiary care centers Rawalpindi.
Pak Armed Forces Medical J 2020; 70(1): 79-85.
Andrei S, Valeanu L, Chirvasuta R, Stefan MG. New FDA
approved antibacterial drugs: 2015-2017. Discoveries (Craiova)
; 6(1): e81. https://doi.org/10.15190%2Fd.2018.1.
Shirley M. Ceftazidime-avibactam: a review in the treatment of
serious gram-negative bacterial infections. Drugs 2018; 78(6):
-692. https://doi.org/10.1007/s40265-018-0902-x.
Lee S, Phuan PW, Felix CM, Tan JA, Levin MH, Verkman AS, et
al. Nanomolar-potency aminophenyl-1, 3, 5-triazine activators of
the cystic fibrosis transmembrane conductance regulator (CFTR)
chloride channel for prosecretory therapy of dry eye diseases. J
Med Chem Drug Des 2017; 60(3): 1210-1218.
https://doi.org/10.1021/acs.jmedchem.6b01792.
Tsai YM, Wang S, Chiu HC, Kao CY, Wen LL. Combination of
modified carbapenem inactivation method (mCIM) and EDTACIM (eCIM) for phenotypic detection of carbapenemaseproducing Enterobacteriaceae. BMC Microbiol 2020; 20(1): 1-7.
https://doi.org/10.1186/s12866-020-02010-3.
Castanheira M, Doyle TB, Smith CJ, Mendes RE, Sader HS.
Combination of MexAB-OprM overexpression and mutations in
efflux regulators, PBPs and chaperone proteins is responsible for
ceftazidime/avibactam resistance in Pseudomonas aeruginosa
clinical isolates from US hospitals. J Antimicrob Chemother 2019;
(9): 2588-2595. https://doi.org/10.1093/jac/dkz243.
Gajdács M, Kárpáti K, Stájer A. Insights on carbapenem-resistant
Pseudomonas aeruginosa: phenotypic characterization of
relevant isolates. Acta Biologica Szegediensis 2021; 65(1): 105-102.
https://doi.org/10.14232/abs.2021.1.105-112.
Ye Y, Xu L, Han Y, Chen Z. Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. Exp Ther Med 2018;
(1): 1143-1149. https://doi.org/10.3892%2Fetm.2017.5485.
Zhou H, Zhang K, Chen W, Chen J, Zheng J, Liu C, et al.
Epidemiological characteristics of carbapenem-resistant
Enterobacteriaceae collected from 17 hospitals in Nanjing district
of China. Antimicrob Resist Infect Control 2020; 9(1): 1-4.
https://doi.org/10.1186/s13756-019-0674-4.
Javed H, Ejaz H, Zafar A, Rathore AW, ul Haq I. Metallo-betalactamase producing Escherichia coli and Klebsiella pneumoniae:
a rising threat for hospitalized children. J Pak Med Assoc 2016;
(9): 1068-1072.
El-Mahdy R, El-Kannishy G. Virulence factors of carbapenemresistant Pseudomonas aeruginosa in hospital-acquired
infections in Mansoura, Egypt. Infect Drug Resist 2019; 12: 3455.
https://doi.org/10.2147%2FIDR.S222329.
Mohanty S, Mittal G, Gaind R. Identification of carbapenemasemediated resistance among Enterobacteriaceae bloodstream
isolates: a molecular study from India. Indian J Med Microbiol
; 35(3): 421-425.
https://doi.org/10.4103/ijmm.ijmm_16_386.
Sonnevend Á, Ghazawi A, Darwish D, Barathan G, Hashmey R,
Ashraf T, et al. In vitro efficacy of ceftazidime-avibactam,
aztreonam-avibactam and other rescue antibiotics against
carbapenem-resistant Enterobacterales from the Arabian
Peninsula. Int J Infect Dis 2020; 99(1): 253-259.
https://doi.org/10.1016/j.ijid.2020.07.050.
Alatoom A, Elsayed H, Lawlor K, AbdelWareth L, El-Lababidi R,
Cardona L, et al. Comparison of antimicrobial activity between
ceftolozane–tazobactam and ceftazidime–avibactam against
multidrug-resistant isolates of Escherichia coli, Klebsiella
pneumoniae, and Pseudomonas aeruginosa. Int J Infect Dis 2017;
: 39-43. https://doi.org/10.1016/j.ijid.2017.06.007.
Wilson WR, Kline EG, Jones CE, Morder KT, Mettus RT. Effects
of KPC variant and porin genotype on the in vitro activity of
meropenem-vaborbactam against carbapenem-resistant
Enterobacteriaceae. Antimicrob Agents Chemother 2019; 63(3):
e02048. https://doi.org/10.1128/aac.02048-18.
Castanheira M, Doyle TB, Kantro V, Mendes RE, Shortridge D.
Meropenem-vaborbactam activity against carbapenem-resistant
Enterobacterales isolates collected in US hospitals during 2016 to
Antimicrob Agents Chemother 2020; 64(2): e01951.
https://doi.org/10.1128%2FAAC.01951-19.
Pogue JM, Bonomo RA, Kaye KS. Ceftazidime/avibactam,
meropenem/vaborbactam, or both? Clinical and formulary
considerations. Clin Infect Dis 2019; 68(3): 519-524.
https://doi.org/10.1093/cid/ciy576.
Dhillon S. Meropenem/vaborbactam: a review in complicated
urinary tract infections. Drugs 2018; 78(12): 1259-1270.
https://doi.org/10.1007/s40265-018-0966-7.
Li J, Li C, Cai X, Shi J, Feng L, Tang K, et al. Performance of
modified carbapenem inactivation method and inhibitor-based
combined disk test in the detection and distinguishing of
carbapenemase producing Enterobacteriaceae. Ann Transl Med
; 7(20): 566. https://doi.org/10.21037/atm.2019.09.43.
Sfeir MM, Hayden JA, Fauntleroy KA, Mazur C, Johnson JK,
Simner PJ, et al. EDTA-modified carbapenem inactivation
method: a phenotypic method for detecting metallo-β-lactamaseproducing Enterobacteriaceae. J Clin Microbiol 2019; 57(5):
e01757. https://doi.org/10.1128/jcm.01757-18.
Caméléna F, Cointe A, Mathy V, Hobson C, Doit C, Bercot B, et
al. Within-a-day detection and rapid characterization of
carbapenemase by use of a new carbapenem inactivation
method-based test, CIMplus. J Clin Microbiol 2018; 56(9): e00137.