Immune Response to Dengue Virus Infection: Mechanisms and Implications

Authors

  • Dr. Duong Thuy Linh Faculty of Management Sciences, National Economics University, Hanoi, Vietnam
  • Muhammad Nadir Shabbir School of Economics, Renmin University of China Beijing, China

DOI:

https://doi.org/10.51253/pafmj.v74i6.12887

Keywords:

Antibody-Dependent Enhancement, Cytokine Storm, Dengue Virus, Dengue Vaccine, Immune-Mediated Pathogenesis, Therapeutic Interventions.

Abstract

Particularly in tropical and subtropical areas, dengue fever is a fast-expanding worldwide health concern with major hazards from severe forms including dengue hemorrhagic fever and dengue shock syndrome. With an eye toward processes including antibody-dependent enhancement, T-cell dysregulation, and the cytokine storm—all of which are vital in the pathophysiology to severe disease—this article discusses the immune-mediated pathogenesis of dengue. A serious issue during heterotypic serotype secondary dengue infections, antibody-dependent enhancement aggravates immune activation and promotes virus multiplication, therefore contributing to severe results. By causing an overproduction of pro-inflammatory cytokines, dysregulated T-cell responses exacerbate the situation even more and cause shock and vascular leaks. The consequences of these immune systems for the creation of dengue treatments and vaccines also are covered in the paper. The first licensed vaccination, Dengvaxia®, has sparked questions concerning antibody-dependent enhancement in people who are not dengue-naive, therefore stressing the need of safer substitutes. Though they show promise, new vaccination candidates such TAK-003 and TV003/TV005 need more research. Though further study is required, treatment choices like monoclonal antibodies and antivirals have promise for controlling severe dengue. Future studies underline enhancing vaccination safety, knowledge of immunological pathophysiology, and creation of creative treatments to better control and avoid severe dengue. Reducing the worldwide dengue load and improving disease outcomes in impacted populations depend on addressing these obstacles.

Downloads

Download data is not yet available.

References

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013; 496(7446): 504-7.

https://doi.org/10.1038/nature12060

Cattarino L, Rodriguez-Barraquer I, Imai N, Cummings DAT, Ferguson NM. Mapping global variation in dengue transmission intensity. Sci Transl Med 2020; 12(528): eaax4144

https://doi.org/10.1126/scitranslmed.aax4144

WHO. Dengue vaccine: WHO position paper, September 2018 – Recommendations. Vaccine 2019; 37(35): 4848-9.

https://doi.org/10.1016/j.vaccine.2018.09.063

Thomas SJ, Yoon I-K. A review of Dengvaxia®: development to deployment. Hum Vaccin Immunother 2019; 15(10): 2295-314.

https://doi.org/10.1080/21645515.2019.1658503

Graham BS. Rapid COVID-19 vaccine development. Science 2020; 368(6494): 945-6.

https://doi.org/10.1126/science.abb8923

Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ 2020; 369: m1966.

https://doi.org/10.1136/bmj.m1966

Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med 2015; 372(2): 113-23. https://doi.org/10.1056/NEJMoa1411037

Schaar HMvd, Rust MJ, Chen C, Ende-Metselaar Hvd, Wilschut J, Zhuang X, et al. Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells. PLOS Pathogens 2008; 4(12): e1000244.

https://doi.org/10.1371/journal.ppat.1000244

Pan P, Li G, Shen M, Yu Z, Ge W, Lao Z, et al. DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. PLOS Pathogens 2021; 17(7): e1008603.

https://doi.org/10.1371/journal.ppat.1008603

Sprokholt JK, Kaptein TM, Hamme JLv, Overmars RJ, Gringhuis SI, Geijtenbeek TBH, et al. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLOS Pathogens 2017; 13(11): e1006738.

https://doi.org/10.1371/journal.ppat.1006738

Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and Innate Immune Responses in Dengue Infection: Protection versus Disease Induction. The American Journal of Pathology 2013; 182(6): 1950-61.

https://doi.org/10.1016/j.ajpath.2013.02.027

Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect 2018; 7(1): 167.

https://doi.org/10.1038/s41426-018-0168-0

Costa VV, Ye W, Chen Q, Teixeira MM, Preiser P, Ooi EE, et al. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules. mBio 2017; 8(4): 10.1128/mbio.00741-17.

https://doi.org/10.1128/mbio.00741-17

Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando AN, et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proceedings of the National Academy of Sciences. 2013; 110(22): E2046-E53.

https://doi.org/10.1073/pnas.1305227110

Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol. 2021; 78(1): 17-32.

https://doi.org/10.1007/s00284-020-02284-w

Rivino L, Kumaran EAP, Jovanovic V, Nadua K, Teo EW, Pang SW, et al. Differential Targeting of Viral Components by CD4+ versus CD8+ T Lymphocytes in Dengue Virus Infection. Journal of Virology 2013; 87(5): 2693-706.

https://doi.org/10.1128/jvi.02675-12

St. John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol 2019; 19(4): 218-30.

https://doi.org/10.1038/s41577-019-0123-x

George JA, Kim SB, Choi JY, Patil AM, Hossain FMA, Uyangaa E, et al. TLR2/MyD88 pathway-dependent regulation of dendritic cells by dengue virus promotes antibody-dependent enhancement via Th2-biased immunity. Oncotarget 2017; 8(62): 106050-70. https://doi.org/10.18632/oncotarget.22525

Corrêa G, de A. Lindenberg C, Coutinho-Silva R,. The purinergic receptor P2X7 role in control of Dengue virus-2 infection and cytokine/chemokine production in infected human monocytes. Immunobiology 2016; 221(7): 794-802.

https://doi.org/10.1016/j.imbio.2016.02.003

Narayan R, Tripathi S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front Cell Infect Microbiol 2020; 10.

https://doi.org/10.3389/fcimb.2020.580096

Katzelnick LC, Gresh L. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017; 358(6365): 929-32. https://doi.org/10.1126/science.aan6836

Keeler SP, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses 2021; 13(6): 1037.

https://doi.org/10.3390/v13061037

Guzman MG, Vazquez S. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2010; 2(12): 2649-62. https://doi.org/10.3390/v2122649

Srikiatkhachorn A, Mathew A, Rothman AL. Immune Mediated Cytokine Storm and Its Role in Severe Dengue. Seminars in immunopathology 2017; 39(5): 563.

https://doi.org/10.1007/s00281-017-0625-1

Patro ARK, Mohanty S, Prusty BK, Singh DK, Gaikwad S, Saswat T, et al. Cytokine Signature Associated with Disease Severity in Dengue. Viruses 2019; 11(1): 34.

https://doi.org/10.3390/v11010034

Tian Y, Babor M, Lane J, Seumois G, Liang S, Goonawardhana NDS, et al. Dengue-specific CD8 T cell subsets display specialized transcriptomic and TCR profiles. J Clin Invest 2019; 129(4): 1727-41.

https://doi.org/10.1172/JCI123726

Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinski A, et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol 2015; 16(2): 170-7.

https://doi.org/10.1038/ni.3058

Mongkolsapaya J, Dejnirattisai W, Xu X-n, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 2003; 9(7): 921-7.

https://doi.org/10.1038/nm887

Luplerdlop N, Missé D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, et al. Dengue‐virus‐infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO reports 2006; 7(11): 1176-81.

https://doi.org/10.1038/sj.embor.7400814

Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017; 151(3): 261-9.

https://doi.org/10.1111/imm.12748

de la Cruz Hernández SI, Puerta-Guardo HN, Flores Aguilar H, González Mateos S, López Martinez I, Ortiz-Navarrete V, et al. Primary dengue virus infections induce differential cytokine production in Mexican patients. Mem Inst Oswaldo Cruz 2016; 111: 161-7.

https://doi.org/10.1590/0074-02760150359

Downloads

Published

31-12-2024

Issue

Section

Review Articles

Categories

How to Cite

1.
Thuy Linh DD, Shabbir MN. Immune Response to Dengue Virus Infection: Mechanisms and Implications. Pak Armed Forces Med J [Internet]. 2024 Dec. 31 [cited 2025 Jan. 13];74(6):1763-71. Available from: https://pafmj.org/PAFMJ/article/view/12887