Tip Apex Distance As Predictor of Mechanical Complications in Unstable Intertrochanteric Fractures Treated with Proximal Femoral Nails
DOI:
https://doi.org/10.51253/pafmj.v74iSUPPL-2.12248Keywords:
Cephalomedullary nail, Fracture reduction, Pertrochanteric fracture, Secondary stability, Tip apex distance.Abstract
Objective: To evaluate the significance of Tip Apex Distance (TAD) as a predictor of mechanical complications in unstable
intertrochanteric fractures treated with proximal femoral nails and to ascertain a cut-off TAD value for maintaining stable
constructs.
Study Design: Cross-sectional analytical study.
Place and Duration of Study: Department of Orthopedics, Combined Military Hospital, Rawalpindi Pakistan, from Oct 2021 to
Aug 2023.
Methodology: We assessed patient records for reduction categorized as per baumgartner’s and Chang’s criteria. We
evaluated post operative radiographs for TAD and loss of reduction. We reviewed radiological follow ups at 3 months and 6
months to identify mechanical complications. We determined the statistical significance of TAD (p<0.05) and used receiver
operating characteristic (ROC) curve to find the sensitive and specific cut-off value for TAD regarding mechanical
complications.
Results: Among 132 patients, 12(9.09%) experienced mechanical complications. The mean age was 76.3±7.98 years, with
105 males (79.5%) and 27 females (20.5%). The mean TAD was 24.56±2.76 mm, and the mean calcar gap was 5.16±1.27
mm. We found a TAD cut-off of 24.5 mm to be 66.7% sensitive and 51.7% specific for predicting mechanical complications
(AUC 0.55). Complications were significant in Cleveland zones: center-center (40.9%), inferior center (49.2%), and inferior
posterior (9.9%) (p<0.001). The mean time to full weight-bearing without support was 21.00±1.22 weeks.
Conclusion: Maintaining a TAD of less than 25 mm when using the helical blade of intramedullary fixation devices is
recommended. TAD is not an independent sole predictor of mechanical complications.
Downloads
References
Kanis IA, Oden A, McCloskey EV, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 2012;23:2239–56.
Browner BD, Jupiter JB, Krettek C, Anderson PA. Intertrochanteric Hip Fractures. In: Skeletal Trauma: Basic Science, Management, and Reconstruction. Amsterdam: Elsevier, 2015: 1683–1720
Kellam JF, Meinberg EG, Agel J, et al. Fracture and Dislocation Classification Compendium-2018: International Comprehensive Classification of Fractures and Dislocations Committee. J Orthop Trauma 2018; 32: S1–170
Hsu CE, Chiu YC, Tsai SH, et al. Trochanter stabilising plate improves treatment outcomes in AO/OTA 31-A2 intertrochanteric fractures with critical thin femoral lateral walls. Injury 2015; 46: 1047–53
Chang SM, Wang ZH, Tian KW, Sun GX, Wang X, Rui YF. A sophisticated fracture classification system of the proximal femur trochanteric region (AO/OTA-31A) based on 3D-CT images. Front Surg. 2022 Aug 31; 9: 919225.
http://doi: 10.3389/fsurg.2022.919225
Kaufer H. Mechanics of the treatment of hip injuries. Clin Orthop Relat Res. 1980 Jan-Feb; (146): 53-61.
Baumgaertner MR, Curtin SL, Lindskog DM. Intramedullary versus extramedullary fixation for the treatment of intertrochanteric hip fractures. Clin Orthop Relat Res 1998; 348: 87-94
Chang SM, Zhang YQ, Ma Z, Li Q, Dargel J, Eysel P. Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch Orthop Trauma Surg. 2015 Jun; 135(6): 811-8. http://doi: 10.1007/s00402-015-2206-x.
Baumgaertner M, Curtin S, Lindskog D, Keggi J. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg [Am] 1995; 77-A:1058-1064.
Li S, Chang SM, Niu WX, Ma H. Comparison of tip apex distance and cut-out complications between helical blades and lag screws in intertrochanteric fractures among the elderly: a meta-analysis. J Orthop Sci. 2015 Nov; 20(6): 1062-9.
http://doi: 10.1007/s00776-015-0770-0.
Marmor M, Guenthner G, Rezaei A, Saam M, Matityahu A. Reporting on quality of reduction and fixation of intertrochanteric fractures-A systematic review. Injury. 2021 Mar; 52(3): 324-329.
http://doi: 10.1016/j.injury.2021.02.014.
Ehlinger M, Favreau H, Eichler D, Adam P, Bonnomet F. Early mechanical complications following fixation of proximal femur fractures: From prevention to treatment. Orthop Traumatol Surg Res. 2020 Feb; 106(1S): S79-S87.
http://doi: 10.1016/j.otsr.2019.02.027. Kim SJ, Park
HS, Lee DW. Complications after internal screw fixation of nondisplaced femoral neck fractures in elderly patients: A systematic review. Acta Orthop Traumatol Turc. 2020 May; 54(3): 337-343.
http://doi: 10.5152/j.aott.2020.03.113.
Caruso G, Corradi N, Caldaria A, Bottin D, Lo Re D, Lorusso V, Morotti C, Valpiani G, Massari L. New tip-apex distance and calcar-referenced tip-apex distance cut-offs may be the best predictors for cut-out risk after intramedullary fixation of proximal femur fractures. Sci Rep. 2022 Jan 10; 12(1): 357. http://doi: 10.1038/s41598-021-04252-1.
Kuzyk PR, Zdero R, Shah S, Olsen M, Waddell JP, Schemitsch EH. Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma. 2012 Jul; 26(7): 414-21.
http://doi: 10.1097/BOT.0b013e318229acca.
Rubio-Avila J, Madden K, Simunovic N, Bhandari M. Tip to apex distance in femoral intertrochanteric fractures: a systematic review. J Orthop Sci. 2013 Jul; 18(4): 592-8.
http://doi: 10.1007/s00776-013-0402-5.
Stern R, Lübbeke A, Suva D, Miozzari H, Hoffmeyer P. Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop. 2011 Dec; 35(12): 1855-61.
http://doi: 10.1007/s00264-011-1232-8.
Pascarella R, Fantasia R, Maresca A, Bettuzzi C, Amendola L, Violini S, Cuoghi F, Sangiovanni P, Cerbasi S, Boriani S, Tigani DS. How evolution of the nailing system improves results and reduces orthopedic complications: more than 2000 cases of trochanteric fractures treated with the Gamma Nail System. Musculoskelet Surg. 2016 Apr; 100(1): 1-8.
http://doi: 10.1007/s12306-015-0391-y.
Li J, Zhang L, Zhang H, Yin P, Lei M, Wang G, et al. Effect of reduction quality on post‐operative outcomes in 31‐A2 intertrochanteric fractures following intramedullary fixation: a retrospective study based on com‐ puterised tomography findings. Int Orthop. 2019; 43(8): 1951–9.
Jia X, Zhang K, Qiang M, Chen Y. The accuracy of intra‐operative fluoros‐ copy in evaluating the reduction quality of intertrochanteric hip fractures. Int Orthop. 2020; 44(6): 1201–8.
Song H, Chang SM, Hu SJ, Du SC, Xiong WF. Calcar fracture gapping: a reliable predictor of anteromedial cortical support failure after cephalomedullary nailing for pertrochanteric femur fractures. BMC Musculoskelet Disord. 2022 Feb 24; 23(1): 175.
http://doi: 10.1186/s12891-021-04873-7.
Yam M, Chawla A, Kwek E. Rewriting the tip apex distance for the proximal femoral nail anti-rotation. Injury. 2017 Aug; 48(8): 1843-1847.
http://doi: 10.1016/j.injury.2017.06.020.
Goffin JM, Jenkins PJ, Ramaesh R, Pankaj P, Simpson AH. What is the relevance of the tip-apex distance as a predictor of lag screw cut-out? PLoS One. 2013 Aug 28; 8(8): e71195. doi: 10.1371/journal.pone.0071195.
Buyukdogan K, Caglar O, Isik S, Tokgozoglu M, Atilla B. Risk factors for cut-out of double lag screw fixation in proximal femoral fractures. Injury. 2017 Feb; 48(2): 414-418.
http://doi: 10.1016/j.injury.2016.11.018.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Asif Rasheed, Muhammad Nadeem Chaudhry, Malik Muhammad Haseeb, Muhammad junaid, Kashif Ali Naz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.