PATTERNS OF CHRONIC KIDNEY DISEASE – MINERAL BONE DISEASE AND ITS
RELATIONSHIP WITH SOCIO-DEMOGRAPHIC FACTORS AMONG THE PATIENTS
OF CHRONIC KIDNEY DISEASE UNDERGOING HEMODIALYSIS

Batool Butt, Taymmia Ejaz, Sohail Sabir*, Ghayas Khan*
Pak Emirates Military Hospital/National University of Medical Sciences (NUMS) Rawalpindi Pakistan, *Armed Forces Institute of
Urology/National University of Medical Sciences (NUMS) Rawalpindi Pakistan

ABSTRACT

Objective: To determine the prevalence of patterns of CKD-MBD in dialysis patients at a tertiary care hospital and
analyze its relationship with various socio demographic factors.

Study Design: Analytical cross sectional study.

Place and Duration of Study: Pak Emirates Military Hospital Rawalpindi, from Jul 2017 to Dec 2017.

Methodology: The sample population comprised of 100 patients undergoing hemodialysis and blood samples
of calcium, phosphate, alkaline phosphatase and intact PTH were obtained from these patients. CKD-MBD was
classified on the basis of biochemical abnormalities and their relationship with age, gender, marital status,
smoking history, dialysis count per week, dialysis duration was assessed.

Results: Out of 82 patients consisting of 62 males and 20 females, the mean age was 49.8 ± 16 years, 68% of dialy-
sis patients had biochemical abnormalities of which 73% showing high turn over bone disease and 26.8% showing
low turnover bone disease (adynamic and osteomalacia). After applying the logistic regression we found that age,
genre, dialysis vintage and other socio-demographic factors had no significant association with the CKD-MBD
subtypes.

Conclusion: Biochemical abnormalities although common in dialysis patients but the sturdy interconnection
between them is still shrouded in disputation. Special consideration should be remunerated to the dialysis
population with different spectrum of CKD-MBD as propitious management can procrastinate the progression
of CKD and eventually paring down the cardiovascular morbidity and mortality.

Keywords: CKD-MBD, CKD, Hemodialysis.

INTRODUCTION

Chronic kidney disease the tip of an iceberg of covert disease, with a prevalence of about 14% in US population1,2 has always been a major public issue with increased health-care expenditures which not only pose great burden on a developing urbanising country like Pakistan with a struggling frugality but also affects productivity of nation3. CKD-MBD, previously called renal osteo-
dystrophy, one of the non-traditional risk factor for cardiovascular morbidity and mortality refers to broad spectrum of disorders with abnormal mineral metabolism, begins when GFR falls below 60 ml /min and evident as high turn over
(secondary hyperparathyroidism) or low turn over bone disease (adynamic bone disease or osteomalacia). In 2017, KDIGO an nonpartisan and unremunerative foundation, recommended guidelines for CKD-MBD management with specific target ranges for calcium phosphorus and iPTH4.

Recent experimental and epidemiological data have refuelled the long standing debate of CKD-MBD putative relation ship with hypertension, cardiovascular events and renal disease progression5. There is dearth of representative data on the prevalence of CKD-MBD and its spectrum because of the differences among different ethnicities and dialysis modality. The relative prevalence of each of these types varies in different communities and with different dialysis modalities. Low turn over bone disease osteomalacia and mixed uremicosteodystrophy were more
patterns were described by using the descriptive statistics. Continuous variables were presented as means and standard deviation while discrete variables as frequency and percentages. Chi-square was used to determine between-group variances in categorical correlates. Binary logistic regression analysis was done to evaluate factors correlation with CKD-MBD. All statistical analysis was performed using Statistics Package for Social Sciences version 20.0. Chi-square test was used and differences between groups were considered significant if p-values were less than 0.05.
RESULTS

A total of 100 patients of CKD undergoing dialysis were approached to participate in the study. Fifteen refused participation and 02 were ineligible due to the exclusion criteria and 01 died because of myocardial infarction leaving 82 patients consisting of 62 males and 20 females. The mean age was 49.8 ± 16 years. The common etiologies of CKD in this study were hypertensive nephropathy (40%), followed by diabetic/ hypertensive nephropathy (25%), chronic glomerulonephritis (12%), APKD (5%) etiology unknown (10%). The mean BMI was 23.8 ± 3.9 kg/m² with majority of patients having BMI between 18.5-24.5 kg/m². All patients were dialysed with calcivitium dialysate solution 1.25mmol/l, had an adequate Kt/V >1.2, and all patients with high turn over bone disease were taking phosphate binders and vitamin D analogues. The prevalence of mineral bone biochemical abnormalities in the dialysis subjects was 68%, with 60 (73%) patients showing high turn over bone disease (secondary hyper-parathyroidism) and 22 (26.8%) patients showing low turn over bone disease (adynamic and osteomalacia) Clinical and biochemical characteristics are shown in table. Age, dialysis vintage, gender education status did not find any association with CKD-MBD when regression analysis was done.

DISCUSSION

Our study population had a high prevalence of mineral bone biochemical abnormalities (68%) which is in accordance with various international studies in both developed and developing countries. In a similar study in neighbor India, mineral bone abnormalities were found in 74% of study population with 40% and 34% having high turn over and adynamic bone disease respectively 6, 58% had high turn over and 18% were at risk for low turn over disease in another study in India by Vikrant et al7. These findings are in agreement with our study. 75% had MBD in a study by Sanusi et al in Nigeria 8, 73.4% in a South African study9; with over half of the study population having high turn over bone disease. Some 66.9% had mineral abnormalities in a study10 by Seck et al in Senegal, among them 72% had high turn over and 26% had adynamic bone disease.

Hyperparathyroidism was seen in 73.4% of study population in South Africa 9,50% in a Chinese study11 which is considerably higher than 31% observed in DOPPS study 12. 82.7% has secondary hyperparathyroidism in Indian population undergoing HD, 40.6% had iPTH levels >400 pg/ml in the study7. Some 22% of Gulf Cooperation Council Countries (GCC) DOPPS study population had iPTH levels >600 pg/ml 13 and 27.1% of study population in Brazil had iPTH >600 pg/ml13 which is in sharp contrast to 11% having iPTH >600 pg/ml in DOPPS (phase4)12 study in America and Europe. These differences can be explained by dietary practices, racial variations, adherance to medication, access to HD, HD frequency and prescription. Racial differences have been noted in various studies particularly in relation to dietary practices, vitamin D levels, increased hyperparathyroidism in African Americans as ethnic differences exist in skeletal responsivness to PTH14. Although Pakistan is an ethnically diverse country our study did not explore the racial differences in mineral bone abnormalities.

Table: Clinical and biological parameters of CKD-MBD in dialysis patients.

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>High Turn Over Bone Disease</th>
<th>Low Turn Over Bone Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.2 ± 29</td>
<td>48.2 ± 29</td>
<td>51 ± 40</td>
</tr>
<tr>
<td>Sex ratio</td>
<td>2.75</td>
<td>0.22</td>
</tr>
<tr>
<td>Weekly Kt/V</td>
<td>1.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Clinical Symptoms (No. of cases)

Bone pain	20	17
Pruritis	02	05
Fractures	32	19

Biological Parameters

Calcium (mg/dl)	9.1 ± 5	8.0 ± 5
Phosphate (mg/dl)	4.0 ± 2	3.2 ± 2
Ca*P product	90.8 ± 18.2	30.5 ± 11
Alkaline Phospho- te (IU/L)	280 ± 120	105 ± 70
i.PTH (pg/ml)	95 ± 14	5.0 ± 2
Hb (g/dl)	9.0 ± 7.5	7.0 ± 2.5
High serum phosphorus levels >6 mg/ml were observed in average 26% of GCC 1378.1% had hyper phosphatemia >4.5 mg/ml in an Indian study by Vikrant et al7, 30% were above range in a study by Kulkarni et al15 35.8% of Brazilian study population13 some 57% in South African study9 and 75% in Nigerian study population8 also had hyperphosphatemia. Variations in serum phosphate levels and high prevalence can be explained due to conventional hemodialysis as compared to nocturnal HD and dietary practices/phosphate binder use9.

Most common clinical feature in our study was pruritis reported by 45%, it was also the most commonly reported symptom10 in a study by Seck et al, however bone pain was most reported in study by Bansel et al6 bone fractures were more commonly seen in adynamic bone disease in our population. Only 5% of study complained of bone pain in a Nigerian study8.

Hypertension was the common cause of ESRD in our study, in concordance with other studies8,13,14, however Diabetes was the leading cause in other various studies8,7. It is stipulated that Mineral bone disorders are more common in diabetics due to low vitamin D levels, caused by proteinuria resulting in urinary loss of vitamin-d binding proteins, decreased osteoblast life span and accumulation of advanced glycated end products9,13. Adynamic bone disease was more common in diabetics in various studies13. Diabetic patients also had higher prevalence of iPTH levels <150 pg/ml in one study13 Prevalence of high iPTH >600 pg/ml was two-fold higher in non diabetics in one study (32% vs 12%) 13 high serum phosphorus levels >5 mg/ml was also more common in non diabetics. Age and diabetes were also found to be risk factor for adynamic bone disease in one study7.

Although there was no significant association found between age and MBD in our study, studies have found lower phosphorous levels in elderly population16, younger patients had 3-fold higher odds of having high phosphorus levels >6 mg/ml in one study while other were in agreement with our study in finding no association of mineral abnormalities with increasing age9,17, iPTH levels were also seen to decrease with increasing age in various studies13. Elderly have lower bone turnover, low intake low physical activity and low compliance with medications resulting in mostly low bone turn over diseases13 which can explain these variations in different studies.

One study found a significant positive association of iPTH levels with dialysis duration (mean 85.9 month)13, however we did not find any such association in our study.

With regards to education status, studies have shown adherence to medication and dietary modifications were more likely to occur in population with more awareness, 48% were unaware of foods rich in phosphorous and only 8% had knowledge of phosphate binders in one study18 which highlights the role of information and education in CKD patients, however no such association was found in our study and in another study exploring this difference13.

There was increase prevalence of MBD in minority incident population in a U.S based study, poor socio-economic status, poverty and lack of health insurance was cited as common factors17. However it is to be noted that majority of study population in our study were individuals who had cost-free access to hemodialysis and medications although access to high cost phosphate binders such as sevelamer was less, the prevalence of MBD may be higher in study population not having these facilities in Pakistan.

Our study has several limitations. This was a cross-sectional study hence causal relationship cannot be established with any associated factors. Bone biopsy is considered the gold standard for diagnosing MBD which was not carried out due to its invasive nature and cost. The iPTH assays were not standardized. The study also didn’t not take into account dietary factors and habits, the use of and/or compliance/with vitamin D analogues and phosphate binders. It was a single center study with a small study population hence...
results may not be generalized on overall population. However despite these limitations this study is one of the first to investigate the prevalence of CKD-MBD and associated sociodemographic factors in Pakistan, considering limited data on the topic we recommend a National or Regional Data registry of patients undergoing hemodialysis.

CONCLUSION

Biochemical abnormalities although common in dialysis patients but the but the sturdy interconnection between them is still shrouded in disputation. Special consideration should be remunerated to the dialysis population with different spectrum of CKD-MBD as propitious management can procrastinate the progression of CKD and eventually paring down the cardio-vascular morbidity and mortality.

CONFLICT OF INTEREST

There is no conflict of interest to be declared by any author.

REFERENCES