# COMPARISON OF OPEN (HASSON) AND CLOSED (VERESS NEEDLE) METHODS OF CREATING PNEUMOPERITONEUM IN LAPAROSCOPIC SURGERIES

#### Amir Iqbal Ali, Shehzad Abbasi\*, Syed Mukarram Hussain\*\*

Combined Military Hospital Chhor/National University of Medical Sciences (NUMS) Pakistan, \*Combined Military Hospital Quetta/National University of Medical Sciences (NUMS) Pakistan, \*\*Combined Military Hospital/National University of Medical Sciences (NUMS) Rawalpindi Pakistan

#### ABSTRACT

*Objectives:* To compare Open versus Closed method of creating pneumoperitoneum in terms of first access complications.

*Study Design:* Randomized clinical trial.

Place and Duration of Study: Surgical Department, CMH Rawalpindi, from October 2014 to April 2015.

*Material and Methods:* Total 550 Patients presenting in surgical OPD and undergoing elective laparoscopic procedures were included and randomly divided into two equal groups by lottery method. In group A, open technique (Hasson cannula) and in group B, closed technique (Veress needle) was used. All patients were monitored during surgery for any first access related complications and this was carried out at regular intervals. Data for each patient was recorded on patient's proforma.

*Results:* We found better safety profile of open (Hassan) method over close (Veress Needle). Except for more gas leakage in open group (6.2%) as compared to closed (5.1%), all other complications occurred more frequent in closed group. The mean access time in the Open Group ( $3.2 \pm 1.1$  minutes) was less than for the Closed Arm ( $5.4 \pm 0.7$  minutes).

*Conclusions:* There was difference in frequency of complications in both groups with Open method being safer and rate of complication was less as compared to the close method.

Keywords: Hasson cannula, Laparoscopy, Veress needle, Pneumoperitoneum.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## **INTRODUCTION**

The word laparoscopy originated from the Greek word (Laparo-abdomen, scopion-to examine). Laparoscopy is the art of examining the abdominal cavity and its contents. Initially laparoscopic surgery was termed a minimally invasive surgery, but this term was changed to minimal access surgery as laparoscopic surgery is an invasive procedure associated with similar risks of major complications as compared with the conventional open surgery<sup>1</sup>. Laparoscopic surgery carries its own risks and complications. The rate of these complications is however very low. Almost half of these complications occur at the time of port placement in the abdominal cavity. Around 220% of these complications are attri-buted to time of initial or first port

placement for creating the pneumoperitonium<sup>2</sup>. The establishment of pneumoperitoneum requires the introduction of a sharp insufflating needle or trocar. Peritoneal access and creation of pneumo peritoneum are key initial steps of laparoscopic surgery. Methods available for creating pneumo-peritoneum and inserting the laparoscope at the beginning of laparoscopic procedure can be divided into open or closed entry technique<sup>3</sup>.

Closed techniques include Veress Needle (VN) technique and the direct trocar technique, which involve the blind insertion of the trocar directly into the peritoneal cavity, followed by laparoscopic inspection and subsequent gas insufflations. The open (Hasson) technique consists of an initial incision into the peritoneum allowing direct visualization of the insertion of a blunt trocar, before gas insufflation and laparoscope introduction<sup>4</sup>.

**Correspondence:** Dr Amir Iqbal Ali, Department of Surgery, CMH Chhor Pakistan (*Email: dramir.smc@gmail.com*)

Received: 10 Jan 2018; revised received: 02 Apr 2018; accepted: 02 Apr 2018

Studies have shown different results when compared for the complications for open and closed access techniques for creating pneumoperitoneum. According to one study the rates of visceral and vascular injury were respectively 0.048 per cent and zero after open access technique and 0.083 and 0.075 per cent after closed access technique. Mortality rates after closed and open laparoscopy were respectively 0.003 per cent and zero<sup>5</sup>. Similarly another study showed no significant difference between the two techniques<sup>6</sup>. The open laparoscopy (OL) is an alternative to the VN technique, being relatively safer7. Yet others conclude that no method of primary access is superior to other in terms of primary access related complications, and the close primary access is as safe as the open approach<sup>8</sup>.

With the increasing use of laparoscopy for different kinds of surgical procedures, it has become imperative to identify and minimize the complications associated with first port and creating a pneumoperitoneum. The rationale of doing a study on this topic is to compare the two different access techniques and identify, if possible, the procedure with minimum complication.

## MATERIAL AND METHODS

This randomized clinical study was carried out at the General Surgery Department of Combined Military Hospital (CMH) Rawalpindi, which is a tertiary care hospital. The sample collection was carried out from October 2014 to April, 2015. The study consisted of elective therapeutic and diagnostic laparoscopic procedures. Only those cases which fulfilled the inclusion criteria were included in the study. A total of 550 cases were studied during this period and were included in the study by using WHO Calculator. The sampling technique was consecutive (non probability) sampling. Both male and female patients >20 and <65 years of age and patients undergoing elective laparoscopic procedures were included in the study. Patients with history of previous abdominal surgery, para umbilical hernia and those known

to have peritoneal adhesions, with history of diabetes mellitus, chronic renal failure, chronic liver disease and bleeding disorders and very obese patients (BMI>35) were excluded from the study. The study design was randomized clinical trial. All the patients above the age of 20 and below 65 years regardless of gender and BMI <35,

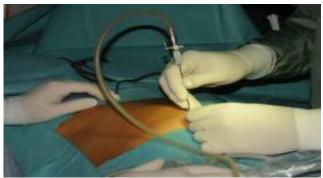



Figure-1: Introduction of veress Needle.



Figure-2: Open technique. Hassan Cannula.

with diseases requiring laparoscopic procedures were considered for inclusion in the study. To exclude any other systemic infection patients were evaluated on three parameters, i.e. history, examination and investigations. Ultra sound abdomen was carried out in doubtful cases in which intra-abdominal pathologies requiring open procedures were ruled out and excluded from the study. Participants were then randomized to be in either of the two groups using lottery method. Surgeries were performed by experienced surgeons in all cases. A total of 550 cases were enrolled in the study. 275 were randomized to the Veress needle (closed) technique, while the remaining 275 were in the Hasson cannula (closed) technique.

Laparoscopy was performed using standard laparoscope. All patients were closely monitored during the course of surgery for any first access related complication including extra peritoneal insufflation, failed attempt, minor and major vessel injury, injury to bowel and gas leakage and this was regularly carried out till the completion of surgery and closure of wounds. females and 80 (29.1%) were males, and in group 2 (N=275), 218 (79.3%) were females and 57 (20.7%) were males. In age group A, total of 219 individuals, including (n=103) in open and (n=116) in close group. In age group B, 253 individuals with (n=130) in Open and (n=123) in close group. In age group C, 78 individuals with (n=42) in Open and (n=36) in Closed were included in the study.

Total of 57 complications (10.4%) occurred

| Complications                 | Open Group (n=275) | Close Group (n=275) | <i>p</i> -value |
|-------------------------------|--------------------|---------------------|-----------------|
| Gas Leakage                   | 17                 | 08                  | 0.065           |
| Failed Attempts               | 2                  | 08                  | 0.055           |
| Extra Peritoneal Insufflation | 2                  | 6                   | 0.28            |
| Minor Vessel Injury           | 3                  | 4                   | 0.5             |
| Bowel Injury                  | 2                  | 4                   | 0.68            |
| Major Vessel Injury           | 0                  | 1                   | 0.99            |
| Total                         | 26                 | 31                  | 0.489           |

Table-I: Individual complications with respect to study groups with *p*-values.

## **Data Analysis**

All the data collected through the proforma were entered into the statistical package for social sciences (SPSS) version 16 and analyzed through its statistical package. Mean and standard deviation was used for quantitative data like age while frequency and percentage stratification with age and gender was done and Chi-Square test applied for categorical variables like complications (failed attempts, minor vessel injury, major vessel injury, extra peritoneal insufflation, bowel injury, and gas leakage) were calculated. Stratification of these with age and gender was done. A *p*-value of less than 0.05 was considered significant. Both groups were compared using Chi-Square test and Fisher Test.

## RESULTS

A total of 550 cases were included in the study after observing inclusion and exclusion criteria. These cases were divided into 3 age groups (A=20-3 5 years, B=36-50 years, C=51-65 years)

Out of 550 cases 413 were females (75.1%) and 137 were males (24.9%) with a female to male ratio 3:1. In group 1 (N=275), 195 (70.9%) were

over all with maximum complications occurring in females 40 cases (7.3%) and to a lesser extent in males, 17 cases (3.09%), although the number of males in study were very less as compared to females. Most of the complications occurred in age group A, (24 cases 4.36%) out of these 19 cases (3.45%) occurred in females and 5 cases (0.91%) in males. In age group 36-50 a total of 23 complications (4.2%) including 16 cases (2.9%) in females whereas 7 cases (1.27%) occurred in males. In age group 51-65 a total of 9 cases (1.63%) including 5 cases (0.91%) in females and 4 cases (0.08%) occurred in males.

The results of this study have been summarized in tables-I-III.

# DISCUSSION

Over the last two decades, rapid advances have made laparoscopic surgery a well-established procedure. However, because laparoscopy is relatively new, it still arouses controversy, particularly with regard to the best method for the creation of the pneumoperitoneum. Traditional closed method of pneumoperitoneum involves initial blind entry into abdomen and more than half of such injuries are related to this primary blind access and occur before the start of actual anatomic dissection. To prevent these complications other methods were introduced in practice like open technique as devised by more popular and widely used by surgeons and gynecologists because it is thought to be quicker of the two. Several studies have shown that use of Veress needle has been associated with many life

Table-II: Frequency of total complications in age groups.

|                                                | Group A       |               |                                                |                                        | Group B                 |                         |                                                   |  |
|------------------------------------------------|---------------|---------------|------------------------------------------------|----------------------------------------|-------------------------|-------------------------|---------------------------------------------------|--|
| Frequency of total complications in age groups |               |               |                                                |                                        |                         |                         |                                                   |  |
| Age                                            | Yes n(%)      | No n (%)      | Chi Square = 0.3305                            | Age                                    | Yes n (%)               | No n (% )               |                                                   |  |
| 20-35                                          | 11            | 92            |                                                | 20-35                                  | 12                      | 104                     |                                                   |  |
| (n=103)                                        | (10.7%)       | (89.3%)       |                                                | (n=116)                                | (10.3%)                 | (89.7%)                 | Chi Square = 1.208                                |  |
| 36-50                                          | 11            | 119           | p-value = 0.884                                | 36-50                                  | 13                      | 110                     | p-value = 0.547                                   |  |
| (n=130)                                        | (8.5%)        | (91.5%)       | p-value = 0.884                                | (n=123)                                | (10.6%)                 | (89.4%)                 | <i>p-value –</i> 0.547                            |  |
| 51-45                                          | 4             | 38            |                                                | 51-65                                  | 6                       | 30                      |                                                   |  |
| (n=42)                                         | (9.5%)        | (90.5%)       |                                                | (n=36)                                 | (16.6%)                 | (83.4%)                 |                                                   |  |
| Frequency                                      |               | plications in | gender groups                                  |                                        |                         |                         |                                                   |  |
| Gender                                         | Yes n (%)     | No n (%)      | Chi Square = 0.5<br>p-value = 0.48             | Gender                                 | Yes n (%)               | No n (%)                |                                                   |  |
| Male                                           | 4 (5%)        | 53 (95%)      |                                                | Male                                   | 12                      | 48                      | Chi square = 5.844                                |  |
| (n=80)                                         | 4 (5%)        | 53 (95%)      |                                                | (n=57)                                 | (21.1%)                 | (78.9%)                 | p-value = 0.016                                   |  |
| Female                                         | 22            | 196           | <i>p</i> -value – 0.48                         | Female                                 | 19 (8.7%)               | 196                     | <i>p</i> -value – 0.010                           |  |
| (n=195)                                        | (11.3%)       | (89.7%)       |                                                | (n=218)                                | 19 (0.7 %)              | (91.3%)                 |                                                   |  |
| Gas leakag                                     | e in age grou |               |                                                |                                        |                         |                         |                                                   |  |
| Age                                            | Yes n (%)     | No n (%)      |                                                | Age                                    | Yes n (%)               | No n (%)                |                                                   |  |
| 20-35                                          | 7(6.9%)       | 96            |                                                | 20-35                                  | 2(26%)                  | 113                     | Chi square = 4.5099<br><i>p</i> -value = 0.104811 |  |
| (n=103)                                        | 7 (6.8%)      | (93.2%)       | Chi aguana = 0.0122                            | (n=116)                                | 3 (2.6%)                | (96.4%)                 |                                                   |  |
| 36-50                                          | 8 (6.2%)      | 122           | Chi square = 0.2132<br><i>p</i> -value = 0.900 | 36-50                                  | 2(1(0))                 | 121                     |                                                   |  |
| (n = 130)                                      |               | (93.8%)       | <i>p</i> -value – 0.900                        | <i>p</i> -value = 0.900 (n=123) 2 (1.0 | 2 (1.6%)                | (98.4%)                 |                                                   |  |
| 51 45                                          | 2 (4.8%)      | 40            |                                                | 51-65                                  | 3 (8.3%)                | 33                      |                                                   |  |
| (n=42)                                         |               | (95.2%)       |                                                | (n=36)                                 |                         | (91.7%)                 |                                                   |  |
| Gas Leakag                                     | ge in gendre  |               | n                                              |                                        |                         |                         |                                                   |  |
| Gender                                         | Yes n (%)     | No n (%)      |                                                | Gender                                 | Yes n (%)               | No n (%)                | Chi Square = 1.411<br><i>p</i> -value = 0.233     |  |
| Male                                           | 3 (3.8%)      | 77            | 7 Chi Square = $1.150$                         | Male                                   | Male<br>(n=57) 3 (5.3%) | 54                      |                                                   |  |
| (n=80)                                         | . ,           | (96.2%)       | p-value = 0.284                                | (n=57)                                 |                         | (94.7%)                 |                                                   |  |
| Female                                         | 14            | 181           | <i>p</i> -value – 0.204                        | Female $5(2.3\%)$                      | 213                     | <i>p</i> -value – 0.255 |                                                   |  |
| (n=195)                                        | (7.2%)        | (92.8%)       |                                                | (n=218)                                | 5 (2.3%)                | (97.7%)                 |                                                   |  |
| Failed Atte                                    | mpt in age g  |               | <del></del>                                    |                                        |                         |                         |                                                   |  |
| Age                                            | Yes n (%)     | No n (%)      |                                                | Age                                    | Yes n (%)               | No n (%)                | Chi square = 1.2498<br><i>p</i> -value = 0.5355   |  |
| 20-35                                          | 2 (1.9%)      | 2 (1 0%) 101  |                                                | 20-35                                  | 5 4 (3.4%)              | 112                     |                                                   |  |
| (n=103)                                        | 2 (1.970)     | (98.1%)       | Chi square = 3.3643                            | (n=116)                                | + (0.+70)               | (95.6%)                 |                                                   |  |
| 35-50                                          | 0             | 130           | <i>p</i> -value = 0.1860                       | 35-50                                  | 4 (3.3%)                | 119                     |                                                   |  |
| (n=130)                                        |               | (100%)        | <i>p</i> -value 0.1000                         | (n=123)                                | 4 (3.3 %)               | (95.7%)                 |                                                   |  |
| 51-65                                          | 0             | 42            |                                                | 51-65                                  | 0                       | 36                      |                                                   |  |
| (n=42)                                         |               | (100%)        |                                                | (n=36)                                 |                         | (100%)                  |                                                   |  |
|                                                | mpt in gend   |               | Γ                                              | 1                                      |                         |                         |                                                   |  |
| Gender                                         | Yes n (%)     | No n (%)      |                                                | Gender                                 | Yes n (%)               | No n (%)                | Fisher test<br>p-value = 0.99                     |  |
| Male                                           | 1 (1.3%)      | 79            | Fisher test                                    | Male                                   | 1 (1.8%)                | 56                      |                                                   |  |
| (n=80)                                         |               |               | p-value = 0.498                                | (n=57)                                 | 1 (1.0 /0)              | (98.2%)                 |                                                   |  |
| Female                                         | 1 (1 5%)      | Iu/ '         | p value 0.190                                  | Female                                 | 7 (3.2%)                | 211                     |                                                   |  |
| (n=195)                                        |               |               |                                                | (n=218)                                |                         | (96.8%)                 |                                                   |  |

Harrith Hasson<sup>9</sup>.

Of the both methods of creating pneumoperitoneum, close method of creating pneumoperitoneum using veress needle has been threatening complications including e.g. injury to the bowel, bladder and major intraabdominal vessels. Therefore surgeons shifted towards open method considering it a more safer method<sup>10</sup>. In our study, we did not find bladder injury and major vessel injury in open laparoscopy. We observed 2 (0.73%) cases of bowel injury in group A and 4 (1.45%) in group B (p-value 0.68). We reported abdominal wall emphysema in 12 (0.3%) cases, omental injury in 11 (0.28%) cases, small bowel injury in 2 (0.050%) cases, mesenteric vascular injury in 2 (0.050) cases of their total

Table-III: Frequency of extraperitoneal insuffiliation, bowel, minor vessel injury.

|                                             |                                      | Group A                                            | lear mournation, bower                         | , <u> </u> | ••• ••• <b>••• ••</b>                 | Group B                     |                                                 |
|---------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------------------|------------|---------------------------------------|-----------------------------|-------------------------------------------------|
| Extraperitoneal Insuffilation in Age Groups |                                      |                                                    |                                                |            |                                       |                             |                                                 |
| Age                                         | Yes n(%)                             | No n (%)                                           | •                                              | Age        | Yes n (%)                             | No n (% )                   |                                                 |
| 20-35                                       |                                      | 102                                                |                                                | 20-35      |                                       | 114                         |                                                 |
| (n=103)                                     | 1 = 103 1 (0.8%)                     | (99.2)                                             | C1: C                                          | (n=116)    | 2 (1.7%)                              | (98.3%)                     | Chi assume = 0.2110                             |
| 36-50                                       | 0                                    | 130                                                | Chi Square = 2.638<br><i>p</i> -value = 0.2688 | 36-50      | 3 (2.4%)                              | 120                         | Chi square = 0.2119<br><i>p</i> -value = 0.8994 |
| (n=130)                                     |                                      | (100%)                                             |                                                | (n=123)    |                                       | (97.6%)                     |                                                 |
| 51-45                                       | 1(0.40)                              | 41                                                 |                                                | 51-65      | 1 (2.8%)                              | 35                          |                                                 |
| (n=42)                                      | 1 (2.4%)                             | (79.6%)                                            |                                                | (n=36)     |                                       | (97.2%)                     |                                                 |
|                                             | oneal Insuffil                       |                                                    | nder Groups                                    |            |                                       |                             |                                                 |
| Gender                                      | Yes n (%)                            | No n (%)                                           |                                                | Gender     | Yes n (%)                             | No n (%)                    |                                                 |
| Male                                        | 0                                    | 80                                                 | Fisher Test                                    | Male       | 5 (8.8%)                              | 52                          | Fisher Test                                     |
| (n=80)                                      | 0                                    | (100%)                                             | p-value = 0.999                                | (n=57)     | 5 (0.070)                             | (91.2%)                     | p-value = 0.0017                                |
| Female                                      | 2(1%)                                | 193                                                | <i>p</i> -value – 0. <i>777</i>                | Female     | 1 (0.5%)                              | 217                         | <i>p</i> -value = 0.0017                        |
| (n=195)                                     | . ,                                  | (99%)                                              |                                                | (n=218)    | 1 (0.5%)                              | (99.5%)                     |                                                 |
|                                             | sel Injury in                        |                                                    |                                                |            | T                                     |                             |                                                 |
| Age                                         | Yes n (%)                            | No n (%)                                           |                                                | Age        | Yes n (%)                             | No n (%)                    |                                                 |
| 20-35                                       | 1 (1%)                               | 102                                                |                                                | 20-35      | 1 (0.9%)                              | 115                         |                                                 |
| (n=103)                                     | 1 (1 /0)                             | (99%)                                              | Chi Square = 0.7183                            | (n=116)    |                                       | (99.1%)                     | Chi square = 0.7491                             |
| 36-50                                       | 2 (1.5%)                             | 128                                                | <i>p</i> -value = 0.6983                       | 36-50      | 2 (1.6%)                              | 121                         | p-value = 0.6876                                |
| (n=130)                                     | 2 (1.5 %)                            | (98.5%)                                            | p value 0.0700                                 | (n=123)    | 2 (1.070)                             | (98.4%)                     | p value 0.0070                                  |
| 51 45                                       | 0                                    | 42                                                 |                                                | 51-65      | 1 (2.8%)                              | 35                          |                                                 |
| (n=42)                                      |                                      | (100%)                                             |                                                | (n=36)     |                                       | (97.2%)                     |                                                 |
|                                             | sel Injury in                        |                                                    | ips.                                           |            |                                       |                             |                                                 |
| Gender                                      | Yes n (%)                            | No n (%)                                           |                                                | Gender     | Yes n (%)                             | No n (%)                    | Fisher test<br><i>p</i> -value = 0.58           |
| Male                                        | 0                                    | 80                                                 | Fisher Test                                    | Male       |                                       | 57                          |                                                 |
| (n=80)                                      |                                      | (100%)                                             | <i>p</i> -value = 0.559                        | (n=57)     | -                                     | (100%)                      |                                                 |
| Female                                      | 3 (1.5%)                             | 192                                                | P                                              | Female     | 4 (1.8%)                              | 214                         |                                                 |
| (n=195)                                     |                                      | (98.5%)                                            |                                                | (n=218)    |                                       | (98.2%)                     |                                                 |
|                                             | iry in Age G                         |                                                    |                                                |            |                                       |                             |                                                 |
| Age                                         | Yes n (%)                            | No n (%)                                           |                                                | Age        | Yes n (%)                             | No n (%)                    |                                                 |
| 20-35                                       | 0                                    | 103                                                |                                                | 20-35      | 1 (0.9%)                              | 115                         | Chi Square = 0.7491<br><i>p</i> -value = 0.6875 |
| <u>(n=103)</u>                              |                                      | (100%)                                             | Chi Square = 2.3486                            | (n=116)    | · · /                                 | (99.1%)                     |                                                 |
| 35-50                                       | 1 (2 4%)                             | 129                                                | p-value = 0.3090                               | 35-50      | 2 (1.6%)                              | 121                         |                                                 |
| <u>(n=130)</u>                              |                                      | (99.2%) (n=123)                                    | · · /                                          | (98.4%)    | 1                                     |                             |                                                 |
| 51-65                                       |                                      | 41                                                 |                                                | 51-65      | 1 (2.8%)                              | 35                          |                                                 |
| (n=42)                                      |                                      | (97.6%)                                            |                                                | (n=36)     | , , , , , , , , , , , , , , , , , , , | (97.2%)                     |                                                 |
|                                             | ary in Gende                         |                                                    |                                                | Candar     | $V_{00} = (9/)$                       | $N_{a} = \langle 0 \rangle$ |                                                 |
| Gender                                      | Yes n (%)                            | No n (%)                                           |                                                | Gender     | Yes n (%)                             | No n (%)                    | Fisher Test<br><i>p</i> -value = 0.029          |
| Male                                        |                                      | $0 \qquad 80 \\ (100\%) \qquad \text{Fisher test}$ | Fisher test                                    | Male       | 3 (3.38%)                             | 54                          |                                                 |
|                                             | (n=80) 0<br>Female<br>(n=195) 2 (1%) | (100%)                                             | <i>p</i> -value = 0.99                         | (n=57)     | . ,                                   | (96.2%)                     |                                                 |
|                                             |                                      | 193                                                | -                                              | Female     | 1 (0.5%)                              | 217                         |                                                 |
| (n=195)                                     |                                      | (99%)                                              |                                                | (n=218)    | ( - · )                               | (99.5%)                     |                                                 |

observed 3 (1.1%) cases of minor vessel injury in open group and 4 cases in close group (*p*-value 0.5) and 6 (2.2%) cases of extra peritoneal insufflation occurred in closed laparoscopy and 2 cases in Open group (*p*-value 0.28). Kumar *et al*, 4014 cases with Verres needle<sup>11</sup>.

Opilka *et al*, concluded after meta-analysis of 31 studies that the open approach (Hassan) was the safestin<sup>12</sup> studies (54.84%), and the closed approach (veress Needle) was found to be

safestin only three studies (9.68%)6. In a study the closed technique was used in 474 operations and the open technique in the 4873 cases. Three cases of major vascular injury were identified and all injuries occurred in the closed-access. The injury location was abdominal Aorta in 2 patients and the external iliac vein in 1 patient<sup>13</sup>. In our study we found one (0.36%) case of major vessel injury, location was Abdominal Aorta with veress needle. No major vessel injury in open group (pvalue 0.99). Taye et al, in their study of 3000 cases reported that the incidence of vascular injury in close laparoscopy was 0.13% compared with 0% in open laparoscopy. The incidence of bowel perforation was 0.21% and 0% respectively<sup>14</sup>. Like we have concluded in our study, the authors concluded that the open (Hasson) technique is relatively safer as major complications are rare and should be adopted in learning and beginning phase<sup>14</sup>.

Parveen *et al*, concluded in their study of 90 cases (45 in each group) that leakage of gas during procedure was observed in 80% (40) cases in open method, while this problem was not faced in closed method<sup>15</sup>. We have found leakage of gas in 2.91% (8) and 6.2% (17) in closed and open laparoscopy respectively (*p*-value 0.065). Though leakage of gas was found more in cases of open laparoscopy, this as such did not increase the risk of the operation or delayed complication.

Chapron et al, concluded in a non-randomized comparison of open versus closed laparoscopic entry. The major vessels and bowel injury rates were 0.01% and 0.04 % in the closed technique and 0.19% and 0% in the open technique respectively. They concluded that open laparoscopy does not minimize major complications in laparoscopic entry<sup>16</sup>. Hasson et al., concluded that there is no evidence to support abandoning the closed entry technique in laparoscopy; however, the selection of patient for an open or alternative procedure is still recommended<sup>12</sup>. Jansen et al., in a clinical trial that compared closed and open entry methods and the complications rate were 0.07% and 0.17%for the closed and open technique respectively.

The entry related complications with the open technique were significantly higher than with the closed technique<sup>17</sup>.

Channg *et al.,* concluded that both the closed (Veress needle) and the open (Hasson cannula) method for gaining access into the peritoneal cavity are safe. The open technique had a time advantage over the closed method. However, there were more complications associated with it<sup>18</sup>. In our study we found complications in both methods, open technique being safer in terms of all complications.

Failure to create pneumoperitoneum is also considered a complication. Akbar *et al.* in their study of 70 cases (35 cases in each group) observed failure of technique in 4 (11.4%) cases of close technique and none in open group (*p*-value 0.039)<sup>19</sup>. Our study had results which are statistically not significant. We observed 8 (2.9%) cases in Veress needle group and only 2 (0.73%) cases in Hassan group (*p*-value 0.055).

Our study at Combined Military Hospital is comparable to any study carried out nationally and internationally. Our sample size (n=550) is more than the sample size in almost any of the study carried out in Pakistan. Moreover frequency for categorical variables like complications were calculated and presented separately for age and gender groups.

In our study total complications significantly occurred in males in close group (p-value=0.0039) as well as in extra peritoneal insufflation (pvalue=0.00696) and in bowel injury (p=0.038). Main reason for this is that males have a strong built and rectus muscles are well developed, a considerable amount of force is required to place first port. Blind Verres Needle insertion requires precision and any amount of unbalanced force causes these injuries (as seen significantly) in verres needle group. Open method utilizes direct vision of these muscles and cutting rather than applying blind force.

Females in closed group suffered statistically significant failed attempts (*p*-value=0.047) owing to fat distribution over the abdominal wall.

In open group, significant gas leakage (*p*-value =0.01797) occurred in females owing to fatty wall and large incisions for placement of trocar.

## CONCLUSION

There was difference in frequency of complications in both groups with Open method being safer and rate of complication was less as compared to the close method.

#### **CONFLICT OF INTEREST**

This study has no conflict of interest to be declared by any author.

#### **REFERENCES**

- 1. Juneja I, Bhatt J, Vaishnani B, Patiwala F. Open Versus Closed Method of Establishing Pneumoperitoneum for Laparoscopic Surgery. Int J Res Med 2016; 5(1): 9-13.
- 2. Mishra R. Textbook of practical laparoscopic surgery. 3rd ed. New Delhi: Jaypee Brothers; 2009.
- 3. Bathla V, Thekdi PI, Koradia P, Jhala D, Gadhvi U.Comparative study of modified open technique and closed technique for primary trocar insertion in laparoscopic surgery. Int J Res Med Sci 2016; 4(1): 160-64.
- Hamayun M, Saba N, Bilal M, Mehsud N. Comparison of open versus closed pneumoperitoneum in laparoscopic surgery. Gomal J Med Sci 2015; 13: 115-7.
- Bonjer H, Hazebroek E, Kazemier G, Giuffrida M, Meijer W, Lange J. Open versus closed establishment of pneumo-peritoneum in laparoscopic surgery. Br J Surg 1997; 84(5): 599-602.
- Opilka M, Starzewski J, Lorenc Z, Tarnowski A, Zawada Z. Open versus closed laparoscopy entry - which are the evidences? Hepatogastroenterology 2009; 56(89): 75-9.
- Agresta F, Mazzarolo G, Bedin N. Direct Trocar Insertion for Laparoscopy. JSLS 2012; 16(2): 255–9.

- Sajid M, Latif A, Misbah J, Rehman S. Veress needle related complications in Laparoscopic surgery: Our experience. APMC 2010; 4(1): 72-6.
- 9. Chotai NR, Choksi DB, Damor S, Bhedi A. Intraperitoneal access by closed method (veress needle) versus open (Hasson's) method in laparoscopic surgery to create pneumoperitoneum. Int Surg J 2017; 4(8): 2786-90.
- 10. Vindal A, Lal P. The Veress needle causes most laparoscopic injuries and should be abandoned: FOR: the open technique is safer and saves time. BJOG 2015; 122(1): 141.
- Kumar S, Bhaduri S, Ansari AM, Tripathi S, Dikshit P. Verres Needle: A safe Technique in Modern Laparoscopic Era. World J Laparoscop Surgery 2013; 6(1): 1.
- Hasson HM. A modified instrument and method for laparoscopy. American J Obs Gynaecol 1971; 110(6): 886–87.
- Simforoosh N, Basiri A, Ziaee SA, Tabibi A, Nouralizadeh A, MH. Major vascular injury in laparoscopic urology. JSLS 2014; 18(3).
- 14. Taye MK, Fazal SA, Pegu D, Saikia D. Open versus closed laparoscopy: yet an unresolved controversy. J Clin Diagn Res 2016; 10(2).
- 15. Parveen S, Jehan M. Open Versus Closed Entry Techniques of Laparoscopy in Gynecological Practice. JSP 2013; 18 (4).
- Chapron C, Cravello L, Chopin N, Kreiker G, Blanc B, Dubuisson JB. Complications during set-up procedures for laparoscopy in gynaecology: open laparoscopy does not reduce the risk of major complications. Acta Obstetricia et Gynaecologica Scandinavica 2003; 82(12): 1125–29.
- Jansen FW, Kolkman W, Bakkum EA, De Kroon CD, Trimbos-Kemper TCM, Trimbos JB. Complications of laparoscopy: an inquiry about closed - versus open-entry technique. Am J Obs Gynaecol 2004; 190(3): 634–38.
- Channa G, Siddiqui A, Zafar S. Open versus closed method of establishing pneumoperitoneum for laparoscopic cholecystectomy. J Coll Phy Surg Pak 2009; 19(9): 557-60.
- 19. Akbar M, Khan IA, Naveed D, Khattak I, Zafar A, Wazir MS et al. Comparison of closed and open methods of Pneumoperitoneum in laparoscopic cholecystectomy. J Ayub Med Coll Abbottabad 2008; 20(2): 85-9.

.....