ULTRASOUND GUIDED TRANSVERSUS ABDOMINIS PLANE BLOCK VERSUS WOUND INFILTRATION WITH LOCAL ANESTHETIC AGENT IN ABDOMINAL SURGERIES

Qurat Ul Ain Amjad, Asjad Sharif, Amanat Khan
Combined Military Hospital/ National University of Medical Sciences (NUMS) Rawalpindi Pakistan

ABSTRACT

Objective: To compare the pain relief and frequency of analgesia requirement in post abdominal surgeries using ultrasound guided transversus abdominis plane (TAP) block with that of wound infiltration with local anesthetic agent.

Study Design: Randomized control trial.

Place and Duration of Study: This randomized control trial study was conducted at Anesthesia Department of Combined Military Hospital, Rawalpindi, after getting permission from hospital ethical committee from 28th Feb, 2015 to 31st Aug 2015.

Material and Methods: The total number of patients included in the study were 100 with American Society of Anaesthesiologists (ASA) status I/II scheduled for elective abdominal surgeries. They were included in the study after written informed consent. The patients in group I received TAP block with 20 ml of 0.25% bupivacaine while those in group II had wound infiltration at the end of surgery with 20 ml of 0.25% bupivacaine. After induction of general anesthesia, ultrasound guided transversus abdominis plane block was performed with Kontron Agile ultrasound system using linear transducer (8-12 Hz) 15 minutes prior to the surgical incision. A Stimuplex nerve stimulator needle 22G, 50mm was used by in-plane technique to deposit local anesthetic agent. In post anesthesia care unit (PACU), visual analogue scale (VAS) from 0 to 10, and requirement of analgesia at 0, 2, 4, and 6 hours respectively was used to assess the pain.

Results: Both groups were comparable in regard to demographic data. Peak pain scores were measured using VAS with higher scores indicating worst outcome. The peak pain scores in group I patients were lower as compared to the patients in group II (p-value <0.05). The time to first analgesia was longer 8.92 ±1.509 in group I as compared to 5.1 ±1.971 in group II (p-value=0.05). The frequency of analgesia requirement in post-operative period was also more in group II. 30% patients in group II required analgesia in first two hours as compare to 0% in group I while in the sixth hour 64% of the patients in group II required analgesia as compared to 8% in group II.

Conclusion: The comparable short term post-operative pain relief was provided by both ultrasound guided TAP block and local wound infiltration, but the TAP Block showed better and long lasting effects.

Keywords: Abdominal surgeries, Local wound infiltration, Transversus abdominis plane (TAP) block, Ultrasound guided, Visual analogue scale (VAS).

INTRODUCTION

The control of postoperative pain effectively is an essential component of the care of the surgical patients. The objectives of managing postoperative pain are to reduce the length of hospital stay, and patient's satisfaction besides seeking early mobilization and relieving suffering after surgery. Management of acute perioperative pain, traditionally relied on opioid medications solely. Opioids target the central mechanisms involved in pain perception. Recently concept of multimodal analgesia has been introduced which is a better approach that uses several agents, each of which act at different sites of pain pathway. This reduces the dependence on a single medication and mechanism. The target of postoperative pain management is to keep side effects to a minimum besides relieving pain. The
measures taken to make the postanesthesia period less uncomfortable are important with regards to pain relief. During surgery the nerves can be blocked before making an incision or after skin closure with local anesthetic agent (abdominal nerve block) at the end of operation or the local anesthetic solution can be used to infiltrate the wound to lessen the postoperative pain (pre-emptive wound analgesia). The transversus abdominis plane (TAP) block is a peripheral nerve block designed to anesthetize the nerves supplying the anterior abdominal wall (T6 to L1). It was first described in 2001 by Rafi as a traditional blind landmark technique using the lumbar triangle of Petit. For abdominal surgery both local infiltration and Transversus abdominis plane (TAP) block target on relieving somatic pain. Local anesthetic wound infiltration is easy to perform with low risk. As the advancement of ultrasound technology, performing TAP block have also become easier, safer and more accurate.

Material and Methods

This randomized control trial study was conducted at Anesthesia Department of Combined Military Hospital, Rawalpindi from 28th Feb 2015 to 31st Aug 2015 after getting approval from the hospital ethical committee. The procedure and purpose of this comparative study was explained to the patients and an informed written consent was obtained. A total of 100 patients of ASA status I and II scheduled for elective abdominal surgeries were included in the study. Technique used was consecutive non-probability sampling. All patients were randomly allocated equally to the two groups with 50 patients in each group I and II. The patients in group I received TAP block with 20 ml of 0.25% bupivacaine bilaterally while those in group II received 20 ml of 0.25% bupivacaine as local wound infiltration. Patients with age less than 20 years and greater than 65 years, pregnant females, infection at injection site and bleeding disorder were excluded from the study. Block was performed after induction of anesthesia. Patients were anesthetized with injection propofol 2-2.5 mg/kg body weight I/V. Anesthesia was augmented with isoflurane 1-2% inhaled and endotracheal intubation was facilitated with injection atracurium besylate 0.5 mg/kg body weight I/V. Maintenance anesthesia consisted of 50% air in oxygen with isoflurane 1-2%, and hemodynamic variables within 10% of baseline values was maintained. All patients were pre-medicated with injection midazolam 2mg I/V, injection nalbuphine 5-10mg I/V, injection metoclopramide 10 mg I/V. Anticholinesterase was given to reverse neuromuscular block at the end of procedure with injection neostigmine 0.04-0.07 mg/ kg body weight I/V in combination with injection glycopyrrolate 5-10 micrograms/kg body weight I/V. At surgical completion, anesthesia was discontinued, 100% oxygen administered and patients were extubated when appropriate and shifted to PACU.

Table I: Demographic data.

<table>
<thead>
<tr>
<th></th>
<th>Group I</th>
<th>Group II</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE (years)</td>
<td>35.52 ± 7.091</td>
<td>35.36 ± 7.247</td>
<td>0.885</td>
</tr>
<tr>
<td>GENDER (male/female)</td>
<td>38/ 12</td>
<td>32/ 18</td>
<td>1.000</td>
</tr>
<tr>
<td>HEIGHT (cms)</td>
<td>162.80 ± 5.717</td>
<td>166.46 ± 5.65</td>
<td>0.363</td>
</tr>
<tr>
<td>WEIGHT (kg)</td>
<td>62.92 ± 10.760</td>
<td>69.80 ± 9.519</td>
<td>0.544</td>
</tr>
</tbody>
</table>

Table II: Peak pain scores at 0,2,4, and 6 hours post operatively (Mean ± Standard Deviation).

<table>
<thead>
<tr>
<th>Time</th>
<th>Peak pain scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>Group II</td>
</tr>
<tr>
<td>0 hours</td>
<td>0.06 ±0.23</td>
</tr>
<tr>
<td>2 hours</td>
<td>0.14 ±0.35</td>
</tr>
<tr>
<td>4 hours</td>
<td>1.06 ±1.01</td>
</tr>
<tr>
<td>6 hours</td>
<td>4.50 ±0.50</td>
</tr>
</tbody>
</table>
After induction of general anesthesia, ultrasound guided TAP block was performed with Kontron Agile ultrasound system using linear ultrasound transducer (8-12 Hz) 15 minutes before the surgical incision. The patient was held in supine position and the ultrasound probe was placed in a transverse plane between the lower costal margin and the iliac crest in the mid axillary line. Transversus abdominis and external oblique muscles were identified. A Stimuplex 22 G,50 mm needle was advanced using in-plane technique with an anteromedial to posterolateral direction. The needle was advanced between the aponeurosis of the internal oblique and transversus abdominis muscles. With intermittent aspiration the local anesthetic i.e. 20 ml of 0.25% bupivacaine was deposited and seen as a hypoechoic shadow pushing the two layers apart. Likewise TAP was performed on contralateral side. The patients in the other group received 20 ml of 0.25% bupivacaine as local wound infiltration after skin closure.

In post anesthesia care unit, visual analogue scale (VAS) graduated from 0 to 10 was used for pain assessment. ‘0’ showed no pain while ‘10’ showed the worst pain imaginable. The VAS score of greater than 5 was used for administering analgesic. For first two hours in the post operative care unit, Inj Tramadol 50 mg I/V was given by the nurse on request of the patients with minimum 20 minutes between the doses. After two hours Inj Tramadol 30 mg I/V was given based on initial post operative analgesic requirement protocol with minimum 30 minutes following the last tramadol dose. The record of analgesia requirement was also made. Investigator who was involved in recording post operative parameters of the patients was blinded to the study group.

All the data were analyzed using statistical package for social sciences (SPSS) version 19. Descriptive statistics for both qualitative and quantitative variables were calculated. Frequency and percentages were calculated for qualitative variables like analgesia requirement. Mean ± standard deviation was calculated for quantitative data like age, pain scores. p-values for demographic data and analgesia requirement was calculated using paired sample t-test. Frequency of pain between the two groups was measured using chi-square test. Level of significance was taken as p<0.05.

RESULTS

A total of 100 patients with ASA status I/II were included in the study with 50 patients in each group. Mean ± SD was calculated for demographic data and means were compared using paired sample t-test.

Demographic data of both groups were comparable as represented by Mean X ± SD (table-I)

Table-III: Frequency of analgesia requirement in percentages.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group I</th>
<th>Group II</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hours</td>
<td>Yes</td>
<td>0%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>100%</td>
<td>96%</td>
</tr>
<tr>
<td>2 Hours</td>
<td>Yes</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>100%</td>
<td>70%</td>
</tr>
<tr>
<td>4 Hours</td>
<td>Yes</td>
<td>4%</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>96%</td>
<td>56%</td>
</tr>
<tr>
<td>6 Hours</td>
<td>Yes</td>
<td>8%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>92%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table-IV: Time to first requirement of i/v analgesia in hours.

<table>
<thead>
<tr>
<th>Time to first analgesia in hours</th>
<th>Group I</th>
<th>Group II</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.92 ±1.509</td>
<td>5.1 ±1.971</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Post-operative pain was measured using numerical rating scale. Using visual analogue scale graduated from 0 to 10 on which 0 meant no pain while score of 10 showed worst pain. Higher score indicated worst outcome. In both groups pain scores were less in group I as compared to group II with p-value of less than 0.05 compared using chi-square test (table-II).

The frequency of requirement of analgesia in post-operative period by the patients in two groups and the time for first analgesia was measured using percentages and chi square test respectively (table-III & IV). The patients in group II have higher percentages for the requirement of analgesia as those in group I and the time to first analgesia needed was more in group I. Frequency of analgesia requirement was compared using paired sample t-test.

DISCUSSION

A variety of unwanted post operative consequences following poorly controlled pain after abdominal surgery includes prolonged hospital stay besides patient suffering and distress. Transversus abdominis plane (TAP) block, first described by Kuppuvelumani et al in 19933, and formally documented by Rafi in 20012, TAP block is a promising effective method for post operative pain control after abdominal surgeries. Ultrasound guided transversus abdominis plane block provides excellent results in experienced hands with lesser complications6. TAP block is both effective and safe post operative analgesic modality in a variety of procedures including general surgeries7,8. It has proven to be effective in various pediatric surgeries also9,10. Other procedures like urological11, gynecological12-14 and plastic11 can also benefit from this. To enhance the recovery after lower abdominal surgeries, it is suggested as a part of multimodal anesthetic approach16. It is not only effective in reducing pain but also decreases morphine/opioid consumption after lower abdominal surgery17,18.

Wound infiltration with local anesthetic agent is also a commonly used method for reducing post operative pain19,20. A single injection of local anesthesia into skin and subcutaneous tissue layer at surgical incision sites could lower the pain scores postoperatively21. It is a convenient post operative analgesia procedure which is widely performed.

Our primary aim was the alleviation of post operative pain. VAS pain score considered as the gold standard for pain quantification22 was used to evaluate post operative pain severity on a scale of 0-10. Uptil 6 hours postoperatively, there was significantly lower peak pain scores in group I. The results of this study were comparable with
the observations reported by Ortiz and other researchers that the efficacy of TAP is of longer duration than that of local anesthetic infiltration. Ultrasound guided TAP block, which allows more accurate visualization of the needle, TAP plane, and injection spot is considered to be safer clinically and is associated with lesser complications like failure to block, injuries to abdominal viscera, nerves and vessels.

CONCLUSION
The comparable short term post operative pain relief was provided by both ultrasound guided TAP block and local wound infiltration, but the TAP block showed better and long lasting effects.

CONFLICT OF INTEREST
This study has no conflict of interest to declare by any author.

REFERENCES